Stochastic soil moisture dynamic modelling: a case study in the Loess Plateau, China

Author:

WANG Cong,WANG Shuai,FU Bojie,ZHANG Lu,LU Nan,JIAO Lei

Abstract

ABSTRACTSoil moisture is a key factor in the ecohydrological cycle in water-limited ecosystems, and it integrates the effects of climate, soil, and vegetation. The water balance and the hydrological cycle are significantly important for vegetation restoration in water-limited regions, and these dynamics are still poorly understood. In this study, the soil moisture and water balance were modelled with the stochastic soil water balance model in the Loess Plateau, China. This model was verified by monitoring soil moisture data of black locust plantations in the Yangjuangou catchment in the Loess Plateau. The influences of a rainfall regime change on soil moisture and water balance were also explored. Three meteorological stations were selected (Yulin, Yan'an, and Luochuan) along the precipitation gradient to detect the effects of rainfall spatial variability on the soil moisture and water balance. The results showed that soil moisture tended to be more frequent at low levels with decreasing precipitation, and the ratio of evapotranspiration under stress in response to rainfall also changed from 74.0% in Yulin to 52.3% in Luochuan. In addition, the effects of a temporal change in rainfall regime on soil moisture and water balance were explored at Yan'an. The soil moisture probability density function moved to high soil moisture in the wet period compared to the dry period of Yan'an, and the evapotranspiration under stress increased from 59.5% to 72% from the wet period to the dry period. The results of this study prove the applicability of the stochastic model in the Loess Plateau and reveal its potential for guiding the vegetation restoration in the next stage.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3