The potential role of the Antarctic Ice Sheet in global biogeochemical cycles

Author:

Wadham J. L.,De'ath R.,Monteiro F. M.,Tranter M.,Ridgwell A.,Raiswell R.,Tulaczyk S.

Abstract

ABSTRACTOnce thought to be devoid of life, the Antarctic Ice Sheet is now known to be a dynamic reservoir of organic carbon and metabolically active microbial cells. At the ice-bed interface, subglacial lake and sedimentary environments support low diversity microbial populations, adapted to perennial cold, anoxia and lack of light. The dynamic exchange of water between these shallow environments conveys meltwaters and associated sediments into the coastal ocean. This, together with the release of iceberg-rafted debris to more distal coastal environments, could be important for sustaining primary productivity in the iron-limited Southern Ocean, via the release of associated nutrients and bioavailable iron. We estimate the magnitude and review the wider impacts of the potential export of nutrients (N, P, C, Si and bioavailable Fe) dissolved and associated with suspended sediments in Antarctic runoff and entombed in iceberg rafted debris. Located beneath subglacial lakes and the subglacial till complex are deep sedimentary basins up to 14 km thick, located largely around the Antarctic periphery. These sedimentary basins are largely hydrologically decoupled from shallower lake and till environments by the presence of highly consolidated sediments which limit the penetration of glacial meltwaters to depth. They provide extensive habitats for sustained microbial activity over Ma timescales, and are likely to be a focal point for the anaerobic cycling of organic carbon and other elements in the deep sub-surface. Organic carbon buried in these basins during ice sheet formation is thought to be microbially cycled to methane gas, and the methane largely stored as hydrate within sediments, stabilised by the high pressure/low temperature conditions. We conclude that the export of nutrients and biogenic gases from deep and shallow subglacial Antarctic environments designates Antarctica as a potentially important component of the Earth's carbon cycle, and highlight the importance of evaluating these potential impacts further via global and regional-scale biogeochemical modelling.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3