On integral transforms whose kernels are solutions of singular Sturm–Liouville problems

Author:

Zayed Ahmed I.

Abstract

SynopsisIn this paper we investigate integral transforms of type , where φ(x, s) is the solution of the singular Sturm–Liouville problem: y″ + (s2 – q(x))y = 0, 0≦x <∞ with y(0) cos α + y′(0)sin α = 0, y(x) is bounded at ∞, and dp is the spectral measure. If F(s) = sk for some k = 0, 1, 2, …, then f(x) may not exist since, in general, φ(x, s) is not even in . One aim of this paper is to investigate the Abel summability of these integrals. In the special case where q(x) = 0 and α = π/2, then φ(x, s) = cos sx and dp = ds, while if α = 0, then φ(x, s) = −sin sx/s and dp = s2ds. It is known thatwhere the values of these integrals are interpreted as the Abel limits of these integrals or as the Fourier transform of some tempered distributions. Another aim of this paper is to derive the analogue of these results for the general kernel φ(x, s), and then apply that to the theory of asymptotic expansions.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sampling Theorems Associated with Singular q-Sturm Liouville Problems;Results in Mathematics;2011-05-09

2. Paley–Wiener-Type Theorems for a Class of Integral Transforms;Journal of Mathematical Analysis and Applications;2002-02

3. Generalization of a Theorem of Boas to a Class of Integral Transforms;Results in Mathematics;2000-11

4. Inversion of integral transforms associated with a class of perturbed heat equations;Journal of Mathematical Analysis and Applications;1992-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3