Author:
Huang Shuibo,Li Wan-Tong,Tian Qiaoyu,Mi Yongsheng
Abstract
Making use of the Karamata regular variation theory and the López-Gómez localization method, we establish the uniqueness and asymptotic behaviour near the boundary ∂Ω for the large solutions of the singular boundary-value problemwhere Ω is a smooth bounded domain in ℝN. The weight function b(x) is a non-negative continuous function in the domain, which can vanish on the boundary ∂Ω at different rates according to the point x0 ∊ ∂Ω. f(u) is locally Lipschitz continuous such that f(u)/u is increasing on (0, ∞) and f(u)/up = H(u) for sufficiently large u and p > 1, here H(u) is slowly varying at infinity. Our main result provides a sharp extension of a recent result of Xie with f satisfying limu→f(u)/up = H for some positive constants H > 0 and p > 1.
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case;Electronic Research Archive;2021
2. Uniqueness of large positive solutions;Zeitschrift für angewandte Mathematik und Physik;2017-07-17
3. Bibliography;Metasolutions of Parabolic Equations in Population Dynamics;2015-10-15