Abstract
We study a weighted maximal weak-type inequality for Haar multipliers that can be regarded as a dual problem of Muckenhoupt and Wheeden. More precisely, if Tε is the Haar multiplier associated with the sequence ε with values in [−1, 1], and is the r-maximal operator, then for any weight w and any function f on [0, 1) we havefor some constant Cr depending only on r. We also show that the analogous result does not hold if we replace by the dyadic maximal operator Md. The proof rests on the Bellman function method; using this technique we establish related weighted Lp estimates for p close to 1, and then deduce the main result by extrapolation arguments.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献