Abstract
SynopsisUniform asymptotic expansions are derived for solutions of the spheroidal wave equation, in the oblate case where the parameter µ is real and nonnegative, the separation parameter λ is real and positive, and γ is purely imaginary (γ = iu). As u →∞, three types of expansions are derived for oblate spheroidal functions, which involve elementary, Airy and Bessel functions. Let δ be an arbitrary small positive constant. The expansions are uniformly valid for λ/u2 fixed and lying in the interval (0,2), and for λ / u2when 0<λ/u2 < 1, and when 1 = 1≦λ/u2 < 2. The union of the domains of validity of the various expansions cover the half- plane arg (z)≦ = π/2.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献