Author:
Boyarchenko S. I.,Levendorskiĭ S. Z.
Abstract
We study the Neumann Laplacian in unbounded regions of the form Ω = {(t, x) | t >O,f(t)−1x ∊ Ω′}, where Ω′ ⊂ ℝn−1 is a bounded open set with the Lipschitz boundary and f decays in such a way that the spectrum of is discrete but the counting function N(λ, ) of the spectrum grows faster than a power of λ, a typical example being f(t) = exp (– t In … In t), for t ≧ t0. We compute the principal term of the asymptotics of N(λ, ), with a remainder estimate.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献