Abstract
Consider a space-like plane Π in Minkowski space. Under the presence of a uniform time-like potential directed towards Π, this paper analyses the configurations of shapes that show a space-like surface supported in Π with prescribed volume and show that it is a critical point of the energy of this system. Such a surface is called stationary and it is determined by the condition that the mean curvature is a linear function of the distance from Π and the fact that the angle of contact with the plate Π is constant. We prove that the surface must be rotational symmetric with respect to an axis orthogonal to Π. Next, we show existence and uniqueness of symmetric solutions for a prescribed angle of contact with Π. Finally, we study the shapes that a stationary surface can adopt in terms of its size. We thus derive estimates of its height and the enclosed volume by surface with the support plane.
Publisher
Cambridge University Press (CUP)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献