On polynomial interpolation at the points of a geometric progression

Author:

Schoenberg I. J.

Abstract

SynopsisThis note pursues two aims: the first is historical and the second is factual.1. We present James Stirling's discovery (1730) that Newton's general interpolation series with divided differences simplifies if the points of interpolation form a geometric progression. For its most important case of extrapolation at the origin. Karl Schellbach (1864) develops his algorithm of q-differences that also leads naturally to theta-functions. Carl Runge (1891) solves the same extrapolation at the origin, without referring to the Stirling-Schellbach algorithm. Instead, Runge uses “Richardson's deferred approach to the limit” 20 years before Richardson.2. Recently, the author found a close connection to Romberg's quadrature formula in terms of “binary” trapezoidal sums. It is shown that the problems of Stirling, Schellbach, and Runge, are elegantly solved by Romberg's algorithm. Numerical examples are given briefly. Fuller numerical details can be found in the author's MRC T.S. Report #2173, December 1980, Madison, Wisconsin. Thanks are due to the referee for suggesting the present stream-lined version.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shape-preserving properties of the limit q-Durrmeyer operator;Journal of Mathematical Analysis and Applications;2024-11

2. On the convergence of Lupaş ( p , q ) $(p,q)$ -Bernstein operators via contraction principle;Journal of Inequalities and Applications;2019-02-04

3. q-Summation–Integral Operators;Applications of q-Calculus in Operator Theory;2013

4. q-Bernstein-Type Integral Operators;Applications of q-Calculus in Operator Theory;2013

5. q-Discrete Operators and Their Results;Applications of q-Calculus in Operator Theory;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3