Author:
Franc Aleksandra,Pavešić Petar
Abstract
By a formula of Farber, the topological complexity TC(X) of a (p − 1)-connected m-dimensional CW-complex X is bounded above by (2m + 1)/p + 1. We show that the same result holds for the monoidal topological complexity TCM(X). In a previous paper we introduced various lower bounds for TCM(X), such as the nilpotency of the ring H*(X × X, Δ(X)), and the weak and stable (monoidal) topological complexity wTCM(X) and σTCM(X). In general, the difference between these upper and lower bounds can be arbitrarily large. In this paper we investigate spaces with topological complexity close to the maximal value given by Farber's formula. We show that in these cases the gap between the lower and upper bounds is narrow and TC(X) often coincides with the lower bounds.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Symmetric configuration spaces of linkages;Journal of Applied and Computational Topology;2023-05-08
2. Monotonicity of the Schwarz genus;Proceedings of the American Mathematical Society;2019-10-28