Abstract
SynopsisExistence and uniqueness of solutions of an integro-differential equation that arises in population genetics are proved. This equation describes the evolution of type densities in a population that is subject to mutation and directional selection on a quantitative trait. It turns out that a certain Fréchet space is the natural framework to show existence and uniqueness. One of the main steps in the proof is the investigation of perturbations of generators of differentiable semigroups in Fréchet spaces.
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献