Abstract
SynopsisThe inequality considered in this paper iswhereNis the real-valued symmetric differential expression defined byGeneral properties of this inequality are considered which result in giving an alternative account of a previously considered inequalityto which (*) reduces in the casep=q= 0,r= 1.Inequality (*) is also an extension of the inequalityas given by Hardy and Littlewood in 1932. This last inequality has been extended by Everitt to second-order differential expressions and the methods in this paper extend it to fourth-order differential expressions. As with many studies of symmetric differential expressions the jump from the second-order to the fourth-order introduces difficulties beyond the extension of technicalities: problems of a new order appear for which complete solutions are not available.
Publisher
Cambridge University Press (CUP)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献