Abstract
SynopsisWe consider differential operators of the form H = −d2/dx2 + q(x) acting on u ∈ L2(0,∞) with boundary condition u(0) = 0. The potential q(x) is such that H has essential spectrum [0,∞) and an infinite sequence of negative eigenvalues converging to zero. Let n(E) denote the number of eigenvalues of H which are less than E. Under certain conditions on q(x), the well-known formula n(E)∼(2φ)−1 vol {x, p | p2 + q(x)<E}, E↑0, holds. We shall study the validity of this formula for potentials which show oscillatory behaviour as x →∞, like e.g. q(x) = −(1 + x)−α(a + b sin x) with 0<α <2, a≧0, b≠0. We shall obtain the leading-order behaviour of both n(E) and vol n(E)∼(2φ)−1 vol {x, p | p2 + q(x)<E} as E↑0 for a certain class of q's, and we shall see that the classical formula fails in most cases, but there are some noteworthy exceptions.
Publisher
Cambridge University Press (CUP)