Author:
Kong Q.,Wu H.,Zettl A.,Möller M.
Abstract
We study the spectrum of regular and singular Sturm–Liouville problems with real-valued coefficients and a weight function that changes sign. The self-adjoint boundary conditions may be regular or singular, separated or coupled. Sufficient conditions are found for (i) the spectrum to be real and unbounded below as well as above and (ii) the essential spectrum to be empty. Also found is an upper bound for the number of non-real eigenvalues. These results are achieved by studying the interplay between the indefinite problems (with weight function which changes sign) and the corresponding definite problems. Our approach relies heavily on operator theory of Krein space.
Publisher
Cambridge University Press (CUP)
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献