Abstract
The Lucas numbers υn and the Fibonacci numbers υn are defined by υ1 = 1, υ2= 3, υn+2 = υn+1 + υn and u1 = u2 = 1, un+2 = un+1 + un for all integers n. The elementary properties of these numbers are easily established; see for example [2].However, despite the ease with which many such properties are proved, there are a number of more difficult questions connected with these numbers, of which some are as yet unanswered. Among these there is the well-known conjecture that un is a perfect square only if n = 0, ± 1, 2 or 12. This conjecture was proved correct in [1]. The object of this paper is to prove similar results for υn, ½un and ½υn, and incidentally to simplify considerably the proof for un. Secondly, we shall use these results to solve certain Diophantine equations.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献