Abstract
For any positive integers n and v letwhere d runs through all the positive divisors of n. For each positive integer k and real x > 1, denote by N(v, k; x) the number of positive integers n ≦ x for which σv(n) is not divisible by k. Then Watson [6] has shown that, when v is odd,as x → ∞; it is assumed here and throughout that v and k are fixed and independent of x. It follows, in particular, that σ (n) is almost always divisible by k. A brief account of the ideas used by Watson will be found in § 10.6 of Hardy's book on Ramanujan [2].
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Reference6 articles.
1. Über einige Ramanujansche Sätze;Walfisz;Trav. Inst. Math. Tbilissi,1938
2. Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindestzahl der zu ihrer additiven Zusammensetzung erforderlichen Quadrate;Landau;Arch. Math. Phys,1908
3. On a Theorem of Walfisz
4. �ber Ramanujansche Kongruenzeigenschaften der Zerf�llungsanzahlen. (I)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献