Nusselt Number as Composite Functions of Aspect Ratio and Wall Inclination in Parallelogram Microchannels with Three Types of Thermal Boundary Conditions

Author:

Liou T.-M.,Wang H.,Chan S.-P.

Abstract

AbstractIn this study, attention is focused on the numerical simulations of laminar fluid flow and heat transfer in straight smooth-walled parallelogram channels with various aspect ratios (α) and inclined angles (θ). The Reynolds number (Re), characterized by the channel hydraulic diameter and the working fluid of water, is fixed at 100. The examinedαandθrange from 1 to 10 and 45° to 90°, respectively. Their effects on the thermal fluid features are explored under three thermal boundary conditions: constant wall temperature (TBC), constant axial heat transfer rate with constant peripheral temperature (H1BC), and constant wall heat flux (H2BC). The SIMPLE algorithm is employed for velocity–pressure coupling with the algebraic multigrid method, while the second-order upwind scheme is utilized for spatial discretization in pressure term; the momentum and energy equations are solved with a QUICK scheme; Least Squares Cell-Based Gradient Evaluation is applied for predicting scalar values at the cell faces and for computing secondary diffusion terms and velocity derivatives. One of the new findings is that there exists a critical value ofθ= 70° below which the Nusselt number under H2BC increases with increasingαwhereas beyond which the trend reverses, a result distinct from those computed with TBC and H1BC. Moreover, TBC is found to be a time-saving alternative to H1BC. Furthermore, both Nusselt numbers under the three thermal boundary conditions and friction factor timesReare successfully and compactly correlated with α andθto offer useful reference for designing micro-cooling channels.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3