Poiseuille-Couette Flow and Heat Transfer in an Inclined Channel for Composite Porous Medium

Author:

Liu I-C.,Wang H.-H.,Umavathi J. C.

Abstract

ABSTRACTConvective flow and heat transfer in an inclined channel bounded by two rigid plates is studied, where the lower plate is fixed and upper plate is moving with a constant velocity. One of the regions filled with clear viscous fluid and the other region filled with the porous matrix saturated with a viscous fluid different from the fluid in the first region are considered. The coupled nonlinear equations are mainly solved numerically using finite difference method. It is found that the presence of porous matrix in one of the region reduces the velocity and temperature. Both the velocity and temperature profiles enhance as the values of buoyancy parameter GP, height ratio h, Brinkman number Br, density ratio n and thermal expansion ratio b increase but reduce as the values of porous parameter σ, viscosity ratio λand thermal conductivity ratio λT increase. The Nusselt numbers at upper plate diminish as GP, h and Br increase, whereas they increase as σ, λ and λT increase. The lower plate Nusselt numbers are reversely affected by the relevant parameters. The effect of σ and GP on shear stress profiles are drawn and discussed.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3