Abstract
AbstractAn exact analytical solution to the three-dimensional elasticity problem for a transversely-isotropic composite layer is constructed by making use of the direct integration method along with the Fourier double-integral transform. The original problem is reduced to a system of governing partial-differential equations for separate stress-tensor components. The governing equations are accompanied with corresponding local and integral boundary conditions, obtained on the basis of the original local boundary conditions imposing the normal and shearing forces on the limiting planes of the layer. The numerical analysis of the obtained solution is presented for certain transversely-isotropic composite materials.
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Mechanical Engineering,Condensed Matter Physics
Reference40 articles.
1. Stress state of a transversely isotropic medium with a parabolic crack when linearly changing pressure is applied to its surface
2. On The Three-Dimensional Problems of the Theory of Elasticity of a Transversely Isotropic Body;Hu;Acta Physica Sinica,1953
3. Three-dimensional thermoelasticity problems for transversally isotropic plates
4. On the Effect of Concentrated Forces on the Stress Distribution in an Aelotropic Elastic Solid;Lekhnitskii;Prikladnaya Matematika i Mekhanika,1936
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献