Experimental Study on the Nanoindentation of Thin Copper Films from Deep Submicron to Nano-Scale

Author:

Jeng Y.-R.,Tan C.-M.,Su C. C.,Cheng S.-C.,Cheng C.-Y.

Abstract

AbstractThis study uses the nanoindentation technique to evaluate the mechanical properties of thin copper films at indentation depths measured in the order of nanometers. Copper films with various thicknesses are deposited on a single crystal silicon wafer with a (100) orientation and on a polymethylmethacrylate (PMMA) substrate, respectively. The experimental results show that for soft thin films on a hard substrate, the substrate effect is negligible when the indentation depth is less than 20% of the film thickness. However, the results suggest that hard films on a soft substrate should be treated as a composite system in indentation because the substrate effect is significant. Finally, the results reveal that a significant indentation size effect exists for thin films with a thickness of less than 100nm. A number of possible reasons for the depth dependence of the hardness properties at ultra-shallow indentation depths are proposed and discussed.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3