Two-Dimensional FE Simulation of Impact Loading on Alumina Matrix Nanocomposite Reinforced by Dyneema® HB25 Laminates

Author:

Alebooyeh M.,Baharvandi H. R.,Aghanajafi C.

Abstract

AbstractPerforation process of a novel ceramic/composite panel including alumina-silicon carbide (Al2O3-SiC) nanocomposite as the front plate and ultra-high molecular weight polyethylene laminated composite (Dyneema® HB25) as the back-up impacted by a tip tapered penetrator has been analyzed based on LS-Dyna and HyperMesh codes. In order to balance the competing requirements posed by thickness, weight, cost and performance, a finite element (FE) simulation has been developed with well-developed material models. A two-dimensional, dynamic-explicit and Lagrangian model has been considered. The perforation process has been investigated for three different thicknesses of the ceramic plate. The Johnson-Cook, Johnson-Holmquist and Orthotropic-Elastic material models have been used for the penetrator, ceramic, and composite, respectively. The FE results, which have a good agreement with available experimental data, show that with the increase in the ceramic thickness, ceramic's fracture conoid as well as elasto-plastic deformation of fibers increase while fiber breakage and dishing of the composite layers diminish. In addition to saving cost and time, the FE simulation results can be useful as a fairly accurate prediction tool for the designing of lightweight body protective panels with desired impact resistance performance and eligible blunt trauma of the back-up.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Reference45 articles.

1. Numerical simulation of normal and oblique ballistic impact on ceramic composite armours

2. Ambati R. , “Simulation and Analysis of Orthogonal Cutting and Drilling Processes using LS-DYNA,” M. S. Thesis, Department of Mechanical Engineering, University Of Stuttgart, Stuttgart, Germany (2008).

3. Mechanisms of toughening and strengthening in ceramic-based nanocomposites

4. Effect of matrix on the ballistic impact of aramid fabric composite laminates by armor piercing projectiles

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3