Author:
Rafieian S.,Hashemian M.,Pirmoradian M.
Abstract
AbstractThis study investigated the effects of considering surface and nonlocal energy parameters on the buckling analysis of double piezoelectric nanoplate (DPNP) embedded in elastic foundations and thermal environments. Both in-phase and out-of-phase modes of buckling and various boundary conditions are studied and compared with each other. The governing equations were derived by drawing on the principle of virtual work and then solved by employing the finite difference method. Finite difference solution was validated using Navier's method and journal references. A parametric study was also launched in order to investigate the effects of the external electric voltage, nonlocal parameters, different boundary conditions, elastic foundations and thermal environments on the surface effect of DPNP buckling. The obtained numerical results showed that the influence of surface stress on in-phase and out-of-phase modes of buckling of the DPNP was enhanced by augmenting the nonlocal parameters and external electric voltage; on the other hand, it was found to be decreased by increasing elastic foundations and temperature changes. In addition, the value of surface stress effects for the in-phase mode was higher than that of the out-of-phase one.
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Mechanical Engineering,Condensed Matter Physics
Reference38 articles.
1. Surface stress in solids
2. Size dependent dynamic analysis of nanoplates
3. Finite Difference Method for Biaxial and Uniaxial Buckling of Rectangular Silver Nanoplates Resting on Elastic Foundations in Thermal Environments Based on Surface Stress and Nonlocal Elasticity Theories;Karimi;Journal of Solid Mechanics,2016
4. Surface effects on the vibration and buckling of piezoelectric nanoplates
5. Vibration of nanoscale plates with surface energy via nonlocal elasticity
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献