Bivariate Pseudo-Spectral Local Linearisation Method for Mixed Convective Flow Over the Vertical Frustum of a Cone in a Nanofluid with Soret and Viscous Dissipation Effects

Author:

RamReddy Ch.,Venkata Rao Ch.

Abstract

AbstractIn this investigation, we intend to present the influence of the prominent viscous dissipation and Soret effects on mixed convection heat and mass transfer over the vertical frustum of a cone in a nanofluid. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. In addition, the uniform wall nanoparticle condition at the surface is replaced with the zero nanoparticle mass flux condition to execute physically applicable results. The governing equations of a nanofluid flow in the dimensional form are reduced to a system of partial differential equations in the non-dimensional form by using suitable non-similarity variables and then solved by using a recently introduced spectral method named as Bivariate Pseudo-Spectral Local Linearisation Method (BPSLLM). The convergence and error analysis tests are conducted to examine the accuracy of the spectral method. To validate the method, the present numerical results are compared with the existing results in some special cases and the outcomes are observed to be in very good agreement. The effects of Brownian motion, thermophoresis, Eckert number, Soret number, nanoparticle and regular buoyancy parameters on the dimensionless surface drag, heat, nanoparticle mass and regular mass transfer rates over the vertical frustum of a cone are discussed and illustrated graphically.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3