Hamiltonian Structure and Stability Analysis for a Partially Filled Container

Author:

Ahmad S.,Yue B.,Shah S. F.,Ahmad S.

Abstract

AbstractHamiltonian system is a special case of dynamical system. Mostly it is used for potential shaping of mechanical systems stabilization. In our present work, we are using Hamiltonian dynamics to study and control the fuel slosh inside spacecraft tank. Sloshing is the phenomenon which is related with the movement of fluid inside a container in micro and macro scale as well. Sloshing of fluid occurs whenever the frequency of container movement matches with the natural frequency of fluid inside the container. Such type of synchronization may cause the structural damage or could be a reason of moving object's attitude disturbance. In spacecraft technology, the equivalent mechanical model for sloshing is common to use for the representation of fuel slosh. This mechanical model may contain a model of pendulum or a mass attached with a spring. In this article, we are using mass-spring mechanical model coupled with rigid body to derive the equations for Hamiltonian system. Casimir functions are used for proposed model. Conditions for the stability and instability of moving mass are derived using Lyapunov function along with Casimir functions. Simulation work is presented to strengthen the derived results and to distribute the stable and unstable regions graphically.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3