Free Vibration Analysis of Lock Gate Structure

Author:

Singh Deepak KumarORCID,Pal Priyaranjan,Duggal S. K.

Abstract

ABSTRACTThe effect of fluid on the natural frequencies of a vertical rectangular lock gate is investigated. The fluid is assumed to be inviscid and incompressible having an irrotational flow field. The far boundary of fluid domain is truncated near the lock gate structure by solving the Laplace equation using Fourier half range cosine series expansion. The formulation of lock gate structure is governed using Mindlin’s plate theory. The coupled interaction between the fluid domain and the lock gate structure is established using finite element method (FEM) and a computer code is written using FORTRAN. Convergence study and validation of the formulation are carried out to minimise the computational error. The natural frequencies of lock gate coupled with and without fluid are determined for undisturbed and linearised free surface conditions. By varying extent of fluid domain, the effect on the natural frequencies of lock gate is evaluated. The results of natural frequencies obtained may be useful to the designer when the reservoir lock gate structure is exposed to the natural disasters.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vibrational analysis of polyurethane-sandwiched bridge decks with variable skew angles;Noise & Vibration Worldwide;2024-09-08

2. Finite element static analysis of polyurethane-sandwiched skewed bridge decks;Mathematical Modelling and Numerical Simulation with Applications;2024-06-30

3. Analysis of isotropic stiffened plate structure;Noise & Vibration Worldwide;2023-09-19

4. Forced vibration characteristics of lock gate structure;Noise & Vibration Worldwide;2023-02

5. Dynamic Analysis of Stiffened and Unstiffened Lock Gate Considering Fluid–Structure Interaction;Journal of The Institution of Engineers (India): Series A;2022-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3