Effect of Interlayer on the Elastic-Plastic Deformation of Coating Systems

Author:

Guo Y. X.,Zhao Y. W.

Abstract

ABSTRACTThe finite element method (FEM) was used to study the elastic-plastic contact in the coating systems with interlayer. The results reveal that with the increase of interlayer thickness, the maximum shear stress of coating/interlayer and interlayer/substrate interfaces decreases. Moreover, the sharply changed shear stress between the interfaces of coating/interlayer and interlayer/substrate decreases too. There is no further decrease when interlayer thickness increase to 0.04 mm and above. With the increasing of interlayer elastic modulus, the shear stress of coating/interlayer interface decreases while the shear stress of interlayer/substrate interface increases. Meanwhile, the higher elastic modulus leads to the intensive tensile stress concentration on the interface of coating/interlayer. Hence, the interlayer with appropriate elastic modulus not only reduces the shear stress of coating/interlayer and interlayer/substrate interfaces but also decreases the tensile stress of coating/interlayer interface. The mechanical properties of coating systems were investigated with different interlayer yield strength. The effective hardness and elastic modulus increase with the increase of interlayer yield strength, which is good to protect the substrate from the deformation. In addition, higher indentation load can lead to the decrease of effective hardness and elastic modulus.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3