Abstract
AbstractThis paper is to present the treatment of internal thermoelastic stress analysis in 3D anisotropic bodies by the boundary element method (BEM). Fundamentally, thermal effects will give rise to an additional volume integral in the boundary integral equation (BIE). By applying the fundamental solutions represented by Fourier series, the volume integral has been analytically transformed to the boundary. For the present work, spatial differentiations of the integral equation are performed to give displacement gradients at internal points of interest. This differentiated integral equation is further implemented to perform thermoelastic stress analysis inside 3D anisotropic bodies. This analysis is particularly important in engineering applications when thermoelastic stresses concentrations are present inside the bodies. The present work is the first BEM implementation for this study by the transformed BIE. In the end, two benchmark examples are tested to demonstrate the applicability of the present BEM treatment.
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Mechanical Engineering,Condensed Matter Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献