Author:
Pal D.,Vajravelu K.,G. Mandal
Abstract
ABSTRACTIn this paper, mixed convection stagnation point flow of nanofluids over a stretching/shrinking surface is studied numerically in the presence of thermal radiation and viscous dissipation. The governing boundary layer equations are transformed into a system of nonlinear ordinary differential equations, by using a similarity transformation, which are then solved numerically using a fifth-order Runge-Kutta-Fehlberg method with shooting technique. The effects of various physical parameters are analyzed and discussed. Computed results are presented in graphical and tabular forms. It is found that the Richardson number, thermal radiation and internal heat generation/absorption have interesting and significant effects on skin-friction and local Nusselt number for all the three types of nanofluids.
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Mechanical Engineering,Condensed Matter Physics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献