Mechanical Mass-Spring Model for Understanding Globular Motion of Proteins

Author:

Kim J.-I.,Eom K.,Na S.

Abstract

AbstractThe conformational (structural) change of proteins plays an essential role in their functions. Experiments have been conducted to try to understand the conformational change of proteins, but they have not been successful in providing information on the atomic scale. Simulation methods have been developed to understand the conformational change at an atomic scale in detail. Coarse-grained methods have been developed to calculate protein dynamics with computational efficiency when compared with than all-atom models. A structure-based mass-spring model called the elastic network model (ENM) showed excellent performance in various protein studies. Coarse-grained ENM was modified in various ways to improve the computational efficiency, and consequently to reduce required computational cost for studying the large-scale protein structures. Our previous studies report a modified mass-spring model, which was developed based on condensation method applicable to ENM, and show that the model is able to accurately predict the fluctuation behavior of proteins. We applied this modified mass-spring model to analyze the conformational changes in proteins. We consider two model proteins as an example, where these two proteins exhibit different functions and molecular sizes. It is shown that the modified mass-spring model allows for accurately predicting the pathways of conformation changes for proteins. Our model provides structural insights into the conformation change of proteins related to the biological functions of large protein complexes.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3