Modeling and Analyses of Boiling and Capillary Limitations for Micro Channel Wick Structures

Author:

Chen S.-W.,Liu F.-C.,Wang T.-Y.,Lin W.-K.,Wang J.-R.,Lin H.-T.,Lee J.-D.,Peir J.-J.,Shih C.-K.

Abstract

AbstractIn order to analyze the boiling and capillary limitations of two-phase heat transport devices, the existing models developed by Chi and Peterson and the existing experimental data carried out with various micro channel wick structures from literature were collected for benchmark. It was found that the dominant parameters for boiling and capillary limitations were the nucleation sites and structure geometries of the micro channels, and important parameters were considered to modify the models empirically. It was also found that for micro channel structures the inclined angle is sensitive to the capillary limitations and not to boiling limitations. By properly estimating the nucleation sites and empirical coefficients for micro channels needed by the newly modified models, the boiling and capillary limitations can be accurately predicted, and hence the applicability of the modified models is confirmed. Based on this, a numerical analysis was then carried out to investigate the trends of boiling and capillary limitations of the micro channel wick structures. Effects of the channel geometries and arrangement were taken into account, including the aspect ratio and structure size of the micro channels. Furthermore, the effects of inclined angle and contact angle were also analyzed. The present results can provide a design reference of performance trends of micro channel wick structures.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Reference26 articles.

1. Nucleation site density in pool boiling of saturated pure liquids: Effect of surface microroughness and surface and liquid physical properties

2. “Engineer's Handbook, Reference Tables — Surface Roughness Table,” http://EngineersHandbook.com, http://www.engineershandbook.com/Tables/surfaceroughness.htm (2004).

3. The Role of Surface Conditions in Nucleate Boiling;Griffith;Chemical Engineering Progress Symposium Series,1960

4. Chi S. W. , “Mathematical Modeling of High and Low Temperature Heat Pipes,” GW University Report to NASA, Grant No. NGR 09-010-070 (1971).

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3