Large Eddy Simulation of Two-Phase Flow Pattern and Transformation Characteristics of Flow Mixing Nozzle

Author:

Zhao Jin,Ning Zhi,Lü Ming

Abstract

ABSTRACTThe two-phase flow pattern of a flow mixing nozzle plays an important role in jet breakup and atomization. However, the flow pattern of this nozzle and its transformation characteristics are still unclear. A diesel-air injection simulation model of a flow mixing nozzle is established. Then the two-phase flow pattern and transformation characteristics of the flow mixing nozzle is studied using a numerical simulation method. The effect of the air-diesel velocity ratio, ratio of the distance between the tube orifice and nozzle hole and the tube diameter (H/D), and the diesel inlet velocity was studied in terms of the jet breakup diameter (jet diameter at the breakup position) and jet breakup length (length of the diesel jet from the breakup position to the nozzle outlet). The results show that the jet breakup diameter decreases with the decrease in H/D or the increase in the air-diesel velocity ratio and diesel inlet velocity. The jet breakup length increases first and then decreases with the increase in H/D and air-diesel velocity ratio; the trend of the diesel inlet velocity is complicated. In addition, a change in the working conditions also causes some morphological changes that cannot be quantitatively analyzed in the diesel-air flow pattern. The transition characteristics of the flow pattern are analyzed, and it is found that the main reason for the change in the flow pattern is the change in the inertial force of the air, surface tension force, and viscous force of diesel (non-dimensional Reynolds number and Weber number describe the transition characteristics in this paper). The surface tension force of diesel decreases and the viscous force of diesel and inertial force of air increase when the air-diesel velocity ratio increases or H/D decreases. However, the effects of the diesel surface tension force and viscous force effect are much smaller than that of the air inertial force, which changes the diesel-air flow pattern from a drop pattern to a vibration jet pattern, broken jet pattern, and then a chaotic jet pattern.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Reference22 articles.

1. 20. Jiang, L.L. , “Investigation of atomization mechanisms and flame structure of a twin-fluid injector for different liquid fuels.” Dissertations & Theses - Gradworks (2014).

2. Generation of Steady Liquid Microthreads and Micron-Sized Monodisperse Sprays in Gas Streams

3. Influence of geometry configurations on the microdroplets in flow focusing microfluidics;Liu;Chinese Journal of Theoretical and Applied Mechanics,2016

4. Investigation of Glycerol Atomization in the Near-Field of a Flow-Blurring Injector using Time-Resolved PIV and High-Speed Visualization

5. 12. Ting, S. , “Experimental and theoretical investigation on flow focusing.” Doctoral dissertation (2009).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3