Excitation Condition for Self-Sustained Oscillation in Flow Past a Louvered Cavity

Author:

Zhang Y. C.,Xu Y. G.,Chen X. D.,Zhu Y. F.

Abstract

AbstractLouvered cavities are extensively employed in engineering applications. In the configurations of flow past these cavities, self-sustained oscillations will be excited. This can give rise to structure vibrations or noise. Numerical models are established to analyze excitation condition for of these oscillations. Computational results reveal that the excitation condition can be quantitatively described by the ratio of gap width G to the boundary layer thickness δ at the separation edge. When G/δ exceeds a certain critical value G/δc, self-sustained oscillations are excited. Otherwise, disturbances will dissipate and the flow configuration along the louver will be like a parallel plate flow. The critical value G/δc decreases with the ratio of G to the thickness of the louver plate H. This suggests that the excitation condition is more easily satisfied for a louver with sparse fins. The bottom boundary of the cavity restricts the feedback flow and then suppresses the excitation of self-sustained oscillations. With an increasing cavity height Hc, which reflects the distance between the louver and the bottom boundary, the critical value G/δc decreases and the decreasing rate reduces gradually. In contrast, because G/δc is relatively insensitive to the cavity length Lc, the side boundaries have no obvious influence on the excitation condition.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-excited oscillation study in grille-cavity flow on floating nuclear power platform;IOP Conference Series: Earth and Environmental Science;2019-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3