Combined Free and Forced Convection Couette-Hartmann Flow in a Rotating Channel with Arbitrary Conducting Walls and Hall Effects

Author:

Seth G. S.,Sarkar S.,Makinde O. D.

Abstract

AbstractCombined free and forced convection Couette-Hartmann flow of a viscous, incompressible and electrically conducting fluid in rotating channel with arbitrary conducting walls in the presence of Hall current is investigated. Boundary conditions for magnetic field and expressions for shear stresses at the walls and mass flow rate are derived. Asymptotic analysis of solution for large values of rotation and magnetic parameters is performed to highlight nature of modified Ekmann and Hartmann boundary layers. Numerical solution of non-linear energy equation and rate of heat transfer at the walls are computed with the help of MATHEMATICA. It is found that velocity depends on wall conductance ratio of moving wall and on the sum of wall conductance ratios of both the walls of channel. There arises reverse flow in the secondary flow direction near central region of the channel due to thermal buoyancy force. Thermal buoyancy force, rotation, Hall current and wall conductance ratios resist primary fluid velocity whereas thermal buoyancy force and Hall current favor secondary fluid velocity in the region near lower wall of the channel. Magnetic field favors both the primary and secondary fluid velocities in the region near lower wall of the channel.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Reference47 articles.

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3