Improvement of Centrifugal Pump Performance by Using Different Impeller Diffuser Angles with and Without Vanes

Author:

Khoeini D.,Shirani E.,Joghataei M.

Abstract

ABSTRACTThis study aims at improving the performance of a centrifugal pump by using different angular diffusers on the downstream side of the centrifugal pump impeller. Numerical and experimental studies have been carried out on different vaned and non-vaned diffuser with three different wall divergence angle (α) of 0°, 5° and 10° to achieve that purpose. The data analyses show good agreement between the numerical and experimental results. They reveal profound effect of the divergence angle (α) of angular vaned diffuser on the head and overall efficiency of centrifugal pumps especially at high flow rates as they broaden operating region of the centrifugal pump. In fact it is found that the head and overall efficiency of impeller with vaned diffuser α = 10° enhance by 15.4 and 9 percent respectively compared to that of centrifugal pump with no vaned diffuser at high flow rates. Furthermore the head and overall efficiency of impeller with vaned diffuser α = 10° increase by 5.7 and 7 percent respectively in comparison with the impeller with vaned diffuser α = 0°.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3