Endochronic Simulation on the Effect of Curvature Rate at the Preloading Stage on the Subsequent Creep or Relaxation of Thin-Walled Tubes Under Pure Bending

Author:

Chang K.-H.,Hung C.-Y.

Abstract

ABSTRACTIn this paper, the first-order ordinary differential constitutive equations of endochronic theory were combined with the principle of virtual work for simulating the response of creep (moment is kept constant for a period of time) or relaxation (curvature is kept constant for a period of time) of thin-walled tubes subjected to pure bending with different curvature-rates at the preloading stage. A group of Fourier series was used to describe the circumferential displacements of the tube. Thus, a system of nonlinear algebraic equations was determined. This system of equations can be solved by numerical method. Experimental data tested by Pan and Fan [1] were compared with the theoretical simulations in this study. It is shown that the theoretical formulations effectively simulate the experimental data.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3