An Analytical Method for the Inverse Cauchy Problem of Laplace Equation in a Rectangular Plate

Author:

Liu C.-S.

Abstract

ABSTRACTThe present paper reveals an analytically computational method for the inverse Cauchy problem of Laplace equation. For the sake of analyticity, and also for the frequent use of rectangular plate in engineering structure, we only consider the analytical solution in a two-dimensional rectangular domain, wherein a missing boundary condition is recovered from a partial measurement of the Neumann data on an accessible boundary. The Fourier series is used to formulate a first-kind Fredholm integral equation for the unknown function of data. Then, we consider a Lavrentiev regularization amended to a second-kind Fredholm integral equation. The termwise separable property of kernel function allows us to obtain a closed-form solution of the regularization type. The uniform convergence and error estimation of the regularization solution are proven. The numerical examples show the effectiveness and robustness of the new method.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using the inverse Cauchy problem of the Laplace equation for wave propagation to implement a numerical regularization homotopy method;4TH INTERNATIONAL SCIENTIFIC CONFERENCE OF ALKAFEEL UNIVERSITY (ISCKU 2022);2023

2. Reduction an Inverse Problem to a System of Second Kind Fredholm Integral Equations with No Singularities;Journal of Mathematics;2022-09-16

3. Mapped Regularization Methods for the Cauchy Problem of the Helmholtz and Laplace Equations;Iranian Journal of Science and Technology, Transactions A: Science;2021-02-18

4. An analytical method of regularized solving of the ill-posed Cauchy problem in the elasticity theory;9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING: Dedicated to the 75th Anniversary of Professor V.N. Vragov;2021

5. Gradient Enhanced Localized Radial Basis Collocation Method for Inverse Analysis of Cauchy Problems;International Journal of Applied Mechanics;2020-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3