Implicit Virtual Boundary Method for Moving Boundary Problems on Non-Staggered Cartesian Patch Grids

Author:

Lee S. L.,Cyue G. S.,Chen K. W.

Abstract

AbstractA simple numerical method is proposed in the paper for fluid flow around a moving boundary of irregular shape. The unsteady term is discretized with the implicit scheme such that large time step is allowed. All of the computations are performed on non-staggered Cartesian grid system. Fine Cartesian patch grid system covering the moving object is employed to resolve the solution around the solid body. A closed curve defined by connecting the solid grid points adjacent to the solid-liquid interface is referred to as virtual boundary. The narrow irregular strip of solid between the virtual boundary and the actual solid-fluid interface is called pseudo-fluid. The general fluid region consisting of both fluid and pseudo-fluid is a regular domain that can be efficiently solved with conventional numerical method. In this connection, external force is imposed at each fluid grid point adjacent to the solid-fluid interface to compensate for the numerical error arising from the assumption of pseudo-fluid. The solution procedure is iterated until the required external force converges. Accuracy of the new numerical method is validated through three test problems. The numerical method then is used to investigate the flow induced by the flapping wings of a tethered dragonfly in literature. The corresponding CFL numbers of the four examples are infinity, 20, 100, and 3.29.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mixed convection in a square enclosure with a rotating flat plate;International Journal of Heat and Mass Transfer;2019-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3