An Explicit, Non-Iterative, Single Equation Formulation for an Accurate One Dimensional Estimation of Vaneless Radial Diffusers in Turbomachines

Author:

Amirante R.,De Bellis F.,Distaso E.,Tamburrano P.

Abstract

AbstractThe present paper proposes a very simple one dimensional (1-D) model that accounts for the energy loss caused by the fluid dynamic losses occurring in the vaneless diffusers of centrifugal compressors and pumps. Usually, the present techniques to design turbomachines (pumps, compressors and turbines) emphasize numerical methods and their use is relatively complex because several parameters need to be chosen and a lot of time is required to perform the calculation. For this reason, it is relevant to perform an accurate preliminary design to simplify the numerical computation phase and to choose a very good initial geometry to be used for accelerating and improving the search for the definitive geometry. However, today 1-D modeling is based on the classical theory that assumes that the angular momentum is conserved inside a vaneless diffuser, although the flow evolution is considered as non-isentropic. This means that fluid-dynamic losses are taken into account only for what concerns pressure recovery, whereas the evaluation of the outlet tangential velocity incoherently follows an ideal behavior. Starting from such considerations, a new conservation law for the angular momentum is analytically derived, which incorporates the same fluid-dynamic losses modeled by the thermodynamic transformation law that is employed for correlating pressure recovery with enthalpy increase. Similar arguments hold for incompressible flows. Detailed and very accurate three-dimensional flow simulations are employed to analyze if the new model is capable of predicting the outlet tangential velocity more accurately than the classical theory. Results provided for both compressible (centrifugal compressors) and incompressible (centrifugal pumps) flows and for different inlet velocity profiles show a significant accuracy improvement of the new conservation law in the prediction of the outlet flow conditions when compared with the classical theory, thus demonstrating that the proposed model can be employed in the preliminary design of vaneless diffusers (i.e., in the estimation of the outlet diameter) more effectively than the classical ideal theory. Furthermore, the model is validated against industrial experimental campaigns. Even further experimental data, reported in a previous paper by the same authors, confirm the reliability of the employed approach.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3