Quasi-Steady Flow Dynamics Study of Human Aortic Valve with Numerical Techniques

Author:

Vu H.-H.,Hsu C.-H.

Abstract

ABSTRACTHuman aortic valve is made of thin collagen type tissue. The three leaflets open and close under fluid forces exerted upon them. To simulate the hemodynamic characteristics of the blood flow, ANSYS CFX10.0 software was utilized to analyze the three-dimensional Reynolds-averaged Navier-Stokes equations. With a quasi-steady analysis model, we predict values of the blood velocity and the wall shear stress both over the valve leaflets and the endothelial lining. In addition, investigation on fluid dynamic of a heart valve supposed suffering prolapsed disease has been also conducted, and compared with normal valve. Analysis results highlight that leaflet opening situation and valve geometry affect the shear stress distribution and vortex flow regime. Maximum shear stress takes place near the center of leaflet trailing edge at the very beginning of systolic phase with value of 7.093N/m2. At peak systole, the maximum wall shear stress distributes near the aortic root where jet impingement takes place. Current study also demonstrated the interactive impact between low and high wall shear stress on relation to heart valve disease.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Reference25 articles.

1. Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves

2. In vitro pulsatile flow hemodynamics of five mechanical aortic heart valve prostheses

3. Hsu C. H. , “A Visualization Design Environment for Quick Designs of Prosthetic Mechanical Heart Valves,” Ph.D. Thesis, Department of Mechanical Engineering, Leeds University, U.K. (1995).

4. Structural simulations of prosthetic tri-leaflet aortic heart valves

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3