Pulsatile Flow Patterns and Wall Shear Stresses in Arch of a Turn-Around Tube With/Without Stenosis

Author:

Huang R. F.,Ho C.-Y.,Chen J.-K.

Abstract

ABSTRACTThe temporal/spatial evolution processes of the flow pattern, velocity distribution, and wall shear stress of pulsatile water flows in the arch of 180o turn-around tubes with/without stenosis were experimentally studied by using the particle image velocimetry (PIV). Three transparent tubes made of glass were used: A tube without stenosis in the arch, a tube with a 25% stenosis at the inner wall of arch, and a tube with a 50% stenosis at the inner wall of arch. Here the percentage of stensis denoted the ratio between the stenosis height to inner diameter of arch in the diametral cross section across mid-arch of the central plane. The flow was provided by a pump which approximately simulated the pulsatile pressure waves of human heart beats. The systole to diastole time period ratio is set at 35%:65%. The Womersley parameter, Dean number, and time-averaged Reynolds number were 14, 2348, and 3500, respectively. In the arch of the turn-around tube without stenosis, no boundary layer separation was found during the systolic phase. The reverse flow and recirculation bubble appeared in the arch only during the diastolic phase. The inner wall of the arch experienced lower wall shear stress during the diastolic phase due to the formation of recirculation bubble and secondary flow. In the arch with stenosis, the boundary layer separated from the inner wall and formed a recirculation bubble downstream the stenosis during the systolic phase. Lower stenosis (25%) did not cause drastic variation of the wall shear stresses. At higher stenosis (50%), however, the wall shear stress around the inner wall downstream the stenosis became extraordinarily low, whereas the wall shear stress around the upstream region of the outer wall of the downstream branch of the tube became anomalously large.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3