Author:
Singh J. K.,Joshi N.,Rohidas P.
Abstract
AbstractIn the present study, unsteady MHD boundary layer flow of a rotating Walters’-B fluid (viscoelastic fluid) over an infinite vertical porous plate embedded in a uniform porous medium with fluctuating wall temperature and concentration taking Hall and ion-slip effects into consideration is discussed. The MHD flow in the rotating fluid system is induced due to the non-torsional oscillations of the plate in its own plane and the buoyancy forces arises from temperature and concentration differences in field of gravity. The partial differential equations governing the fluid motion are solved analytically by using regular perturbation and variable separable methods by assuming very small viscoelastic parameter. Solution for velocity field in the case when natural frequency due to rotation and Hall current is equals to the frequency of oscillations i.e. in the case of resonance is also obtained. In order to note the influences of various system parameters and to discuss the important flow characteristics, the numerical results for fluid velocity in the non-resonance case, temperature and species concentration are computed and depicted graphically versus boundary layer parameter whereas skin friction, Nusselt number and Sherwood number at the plate are computed and presented in tabular form. An interesting observation recorded that there arises flow reversal in the primary flow direction due to high rotation. When natural frequency is greater than the frequency of oscillations the fluid velocity in the primary flow direction is maximum at the plate whereas incase when natural frequency is smaller than the frequency of oscillations, it is maximum in the neighborhood of the plate.
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Mechanical Engineering,Condensed Matter Physics
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献