Two-Dimensional Dynamic Ground Effect on a Swimming Undulating Plate: A Parametric Study

Author:

Sierra D. M.,Guo J. H.

Abstract

AbstractThe dynamic ground effect enhances the swimming of fish. The dynamic ground effect affects the kinematic conditions of fish, causing them to swim more efficiently. However, predicting the degree to which the dynamic ground effect can improve the swimming performance of fish is difficult. The dynamic ground effect can potentially save energy for biomimetic underwater vehicles. Therefore, a theoretical model was developed to investigate the effect of a planar boundary on the swimming performance of a two-dimensional undulating plate. General expressions for the thrust, power input, efficiency, and energy loss of the plate were obtained. As examples, cases in which an undulating plate with linearly varying amplitude swam far from and close to a wall under a range of different kinematic conditions were studied. The dynamic ground effect improved the swimming performance of the plate by reducing the power input while maintaining an almost constant thrust; the degree of improvement depended on the kinematic conditions of the plate. Furthermore, the swimming performance of the plate was improved over a range of distances from the wall; this range of distances also depended on the kinematic conditions of the plate.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Reference13 articles.

1. Unsteady propulsion near a solid boundary

2. Swimming of a waving plate

3. Flexible propulsors in ground effect

4. Kinematics of Plaice, Pleuronectes platessa, and Cod, Gadus morhua, Swimming Near the Bottom;Webb;Journal of Experimental Biology,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3