Author:
Chen C. K.,Lin M. C.,Chen C. I.
Abstract
ABSTRACTThe stability analysis of a thin micropolar fluid flowing on a rotating circular disk is investigated numerically. The target is restricted to some neighborhood of critical value in the linear stability analysis. First, a generalized nonlinear kinematic model is derived by the long wave perturbation method. The method of normal mode is applied to the linear stability. After the weakly nonlinear dynamics of a film flow is studied by using the method of multiple scales, the Ginzburg-Landau equation is determined to discuss the necessary condition in terms of the various states of subcritical stability, subcritical instability, supercritical stability, and supercritical explosion for the existence of such flow pattern. The modeling results indicate that the rotation number and the radius of circular disk play the significant roles in destabilizing the flow. Furthermore, the micropolar parameter K serves as the stabilizing factor in the thin film flow.
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Mechanical Engineering,Condensed Matter Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献