Actuarial applications of natural language processing using transformers: Case studies for using text features in an actuarial context

Author:

Troxler Andreas,Schelldorfer Jürg

Abstract

Abstract This paper demonstrates workflows to incorporate text data into actuarial classification and regression tasks. The main focus is on methods employing transformer-based models. A dataset of car accident descriptions with an average length of 400 words, available in English and German, and a dataset with short property insurance claims descriptions, are used to demonstrate these techniques. The case studies tackle challenges related to a multilingual setting and long input sequences. They also show ways to interpret model output and to assess and improve model performance, by fine-tuning the models to the domain of application or to a specific prediction task. Finally, the paper provides practical approaches to handle classification tasks in situations with no or only few labelled data. The results achieved by using the language-understanding skills of off-the-shelf natural language processing (NLP) models with only minimal pre-processing and fine-tuning clearly demonstrate the power of transfer learning for practical applications.

Publisher

Cambridge University Press (CUP)

Reference41 articles.

1. Frees, E.W. (2020). Loss data analytics. An open text authored by the Actuarial Community. GitHub, available at https://openacttexts.github.io/

2. Introduction to Information Retrieval

3. Vaswani, A. , Shazeer, N. , Parmar, N. , Uszkoreit, J. , Jones, L. , Gomez, A.N. , Kaiser, Ł. , & Polosukhin, I. (2017). Attention is all you need. arXiv:1706.03762v5.

4. McInnes, L. , Healy, J. (2018). UMAP: uniform manifold approximation and projection for dimension reduction, arXiv:1802.03426v3.

5. Devlin, J. , Chang, M.-W. , Lee, K. , & Toutanova, K. (2019). BERT: pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805v2.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Emotion recognition using hierarchical spatial–temporal learning transformer from regional to global brain;Neural Networks;2024-11

2. Evaluating the Enhanced Performance of Tree-Based Models for Natural Language Understanding;2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC);2024-01-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3