High genetic diversity in the clonal aquatic weed Alternanthera philoxeroides in the United States

Author:

Williams Dean A.ORCID,Harms Nathan E.ORCID,Knight Ian A.ORCID,Grewell Brenda J.ORCID,Futrell Caryn Joy,Pratt Paul D.ORCID

Abstract

AbstractThe distribution of genetic diversity in invasive plant populations can have important management implications. Alligatorweed [Alternanthera philoxeroides (Mart.) Griseb.] was introduced into the United States around 1900 and has since spread throughout much of the southern United States and California. A successful biological control program was initiated in the late 1960s that reduced A. philoxeroides in the southern United States, although control has varied geographically. The degree to which variation among genotypes may be responsible for variation in control efficacy has not been well studied due to a lack of genetic data. We sampled 373 plants from 90 sites across the United States and genotyped all samples at three chloroplast regions to help inform future management efforts. Consistent with clonal spread, there was high differentiation between sites, yet we found six haplotypes and high haplotype diversity (mean h = 0.48) across states, suggesting this plant has been introduced multiple times. Two of the haplotypes correspond to previously described biotypes that differ in their susceptibility to herbicides and herbivory. The geographic distribution of the three common haplotypes varied by latitude and longitude, while the other haplotypes were widespread or localized to one or a few sites. All the haplotypes we screened are hexaploid (6n = 102), which may enhance biological control. Future studies can use these genetic data to determine whether genotypes differ in their invasiveness or respond differently to control measures. Some states, for instance, have mainly a single haplotype that may respond more uniformly to a single control strategy, whereas other states may require a variety of control strategies. These data will also provide the basis for identifying the source regions in South America, which may lead to the discovery of new biological control agents more closely matched to particular genotypes.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3