Quasioptical Fresnel-based lens antenna with frequency-steerable focal length for millimeter wave radars

Author:

Muckermann NiklasORCID,Barowski JanORCID,Pohl NilsORCID

Abstract

Abstract This article presents the design of a dielectric lens antenna that utilizes the concept of a stepped Fresnel lens for focusing electromagnetic millimeter waves. Based on the quasi-optical properties of these waves, a Cartesian Oval is optimized and employed as a focusing lens. Multiple such lenses are combined to two different Fresnel-based lens antennas. We survey these newly designed lens antennas and compare them with a focusing lens antenna based on a Cartesian oval and a far-field lens antenna. Simulations and measurements with a frequency-modulated continuous-wave (FMCW) radar validate the effectiveness of the new design, demonstrating an even improved focus size while significantly reducing the size and weight of the lens antenna by up to 53% and by nearly 48 %, respectively. Additionally, the Fresnel-based lens antennas reveal a frequency dependency, enabling frequency-based steering of the focal length over a wide relative tuning range of 177%, which we thoroughly investigate for various bandwidths and center frequencies.

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3