Author:
Mercuri Marco,Barmuta Paweł,Soh Ping Jack,Leroux Paul,Schreurs Dominique
Abstract
Continuous-wave (CW) radars have been recently investigated in healthcare aiming at contactless health monitoring. However, a major problem in monostatic CW architectures is represented by the unwanted leakage produced by poor isolation between transmitter and receiver, which can drastically decrease the receiver's sensitivity reducing therefore the radar dynamic range. Although this situation can be easily controlled in case of narrowband CW radar by an appropriate passive microwave design, it becomes much more complicated in case of stepped-frequency CW and frequency-modulated CW architectures that present an ultra-wideband nature. In this paper, a monostatic CW radar integrating a tunable wideband leakage canceler aiming at indoor tagless localization is presented and discussed. The use of the feedforward canceler allows a strong reduction of the unwanted leakage over the whole radar bandwidth. Experimental results demonstrate the feasibility of this approach, showing an outstanding improvement of the radar dynamic range.
Publisher
Cambridge University Press (CUP)
Subject
Electrical and Electronic Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献