The d-Radar: a bistatic system based on conformal arrays

Author:

Galati Gaspare,Carta Paola,Leonardi Mauro,Madia Francesco,Stallone Rossella,Franco Stefania

Abstract

Multifunction radars based on active phased arrays are well known and widely studied systems. The concepts of bistatic architecture, conformal array and digital beam forming (DBF) are combined in this paper to define a novel multifunction radar for point defense. The conical shape of the antenna overcomes the significant limitations in the azimuth coverage of 360° of fixed-faces phased arrays due to the beam scanning up to 45°. The usage of separate transmit/receive arrays and the DBF technique adds the operational flexibility and the possibility of multiple simultaneous functions, with an optimal time-energy resources exploitation. After a short description of its technological demonstrator, some significant design trade-off, and operating aspects of the proposed architecture, called d-Radar, are described, showing the main differences with respect to the classical, four faces, and phased-array multifunction radar architecture. It is described how the operating modes can be made more and more similar to a “staring” or “ubiquitous” radar permitting an instantaneous detection and location of short-range, low-elevation targets for sea and ground operations. Finally, some remarks about the resources management and scheduling are shown with the results from a case of study.

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

Reference38 articles.

1. IET Radar, Sonar & Navigation, Special Issue: Micro Doppler, Volume 9, Issue 9, December 2015, 1137–1302.

2. Leifer M.C. ; Chandrasekar V. ; Perl E. : Dual polarized array approaches for MPAR air traffic and weather radar applications, in IEEE Int. Symp. on Phased Array Systems & Technology, Waltham, MA, 15–18 October 2013, 485–489. doi: 10.1109/ARRAY.2013.6731876.111.

3. Harman S.A. ; Hume A.L. : System for the detection of incoming munitions, International Patent Application PCT WO2011/121286 A1.

4. Track-Before-Detect Algorithms for Targets with Kinematic Constraints

5. 100 Years of Radar

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3