Small UWB antenna with two stop bands by a compact EBG cell loaded with new open meander slots

Author:

Alizadeh FarzadORCID,Ghobadi Changiz,Nourinia JavadORCID

Abstract

Abstract In this paper, a small ultra-wideband (UWB) antenna with two stop bands by a compact electromagnetic bandgap (EBG) cell loaded with two new open meander slots is presented. With the coupling of the EBG cell to the feedline, the stop bands are formed. The designed EBG cell is a mushroom type that has the advantages of being able to independently control the stop bands, high responsiveness selectivity of stop bands, easy switching, the need for fewer EBG cells, and low impact on the working characteristics of the antenna. To have a better understanding of the proposed EBG mechanism, characteristic mode analysis is used. The size reduction of the suggested antenna is obtained by halving the reference antenna relative to the axis of symmetry. The measurement results for −10 dB adaptation are from 2.73 to 13 GHz with stop bands at 3.51 GHz (12.9%) and 5.34 GHz (14.1%). The radiation behavior of the minimized antenna is similar to that of a reference antenna. Minimized UWB antenna with transmission function and group delay with small variations in the operating frequency range is suitable for small multiple-input and multiple-output (MIMO) and diversity systems.

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3