Implementation of a novel Fibonacci branch search optimizer for the design of the low sidelobe and deep nulling adaptive beamformer

Author:

Zhang HaichuanORCID,Zeng Fangling

Abstract

AbstractIn this work, we proposed an adaptive beamformer based on a novel heuristic optimization algorithm. The novel optimization technique inspired from Fibonacci sequence principle, designated as Fibonacci branch search (FBS), used new tree's branches fundamental structure and interactive searching rules to obtain the global optimal solution in the search space. The branch structure of FBS is selected using two types of multidimensional points on the basis of shortening fraction formed by Fibonacci sequence; in this mode, interactive global and local searching rules are implemented alternately to obtain the optimal solutions, avoiding stagnating in local optimum. The proposed FBS is also used here to construct an adaptive beamforming (ABF) technique as a real-time implementation to achieve near-optimal performance for its simplicity and high convergence rate, then, the performance of the FBS is compared with the five typical heuristic optimization algorithms. Simulation results demonstrate the superiority of the proposed FBS approach in locating the optimal solution with higher precision and reveal further improvement in the ABF performance.

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3